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A B S T R A C T

Beef is one of the most popular and widely consumed foodstuffs in the world. Nevertheless, it can easily decay if not
properly treated during distribution and storage. The consumption of low quality beef causes a serious health hazard.
The electronic nose (e-nose) is a rapid and low-cost instrument for beef quality classification. Hence, the development
of a mobile e-nose for online meat quality monitoring is appealing. In the last few years, e-noses have been used to
classify different grades of beef and to predict the number of the microbial population in beef samples. Several
methods are used to deal with these classification and regression problems. Especially in multiclass beef classification
and regression, signals contaminated with noise can significantly degrade the performance of the pattern recognition
module. Therefore, the presence of internal and external noise in e-nose signals is a major challenge in beef quality
monitoring. In this study, a noise filtering framework based on a fine-tuned discrete wavelet transform (DWT) was
developed to handle noisy signals generated by an e-nose sensor array. To the best of our knowledge this is the first
time the problem of e-nose signal noise in beef quality classification is tackled. The proposed framework was in-
tegrated and tested on several machine learning algorithms that were used in previous studies, i.e. k-nearest neighbor
(k-NN), support vector machine (SVM), quadratic discriminant analysis (QDA), artificial neural network (ANN), and
adaptive neuro fuzzy inference system (ANFIS). Furthermore, the effect of noise filtering was investigated in the
classification with two, three, and four classes of beef. The effect of noise filtering was also observed in regression
tasks to predict the size of microbial population in beef samples. The experimental results showed that the proposed
framework provides a significant improvement in multiclass classification and regression tasks.

1. Introduction

Animal-based protein (ABP) consumption rose worldwide from
23.1 kg/person/year to 42.20 kg/person/year from 1961 to 2011 (Sans
and Combris, 2015). The Food and Agriculture Organization of the
United Nations estimates that beef will still be a popular ABP source
globally in 2050. Their report demonstrates that the total demand will
increase in developed countries as well as in developing countries
(Alexandratos and Bruinsma, 2012). Meanwhile, beef is an ideal medium
for the growth of pathogenic microorganisms. The consumption of in-
fected meat can lead to serious health problems. Therefore, it is indis-
pensable to ensure the quality of meat. Meat quality is defined as a set of
properties that together identify what we appreciate about meat when
we use it as a raw material to be processed into meat products. In other
words, meat quality refers to attributes that determine the feasibility of

meat consumption, fresh or stored without deteriorating (Elmasry et al.,
2012; Purslow, 2017). If not handled properly, meat is a highly perish-
able food. For instance, the quality of beef stored at room temperature in
open air will quickly degrade. In addition, meat quality degradation can
also occur during distribution. Apart from intrinsic biotic factors, it can
be affected by external factors, including temperature, meat chill chain,
and transportation (Nychas et al., 2008).

Several microbiological and chemical methods have been developed
for meat quality assessment (e.g. sensory panels, total count of bacteria,
total volatile basic nitrogen (TVB-N), and gas chromatography) but
most of them need special skills, laborious, and time-consuming
(Wojnowski et al., 2017). The primary standard of beef freshness is the
total count of bacteria, but its measurement is time-consuming, espe-
cially in relation to sample preparation and period of incubation. For
decades, e-noses have been projected as a method for rapid detection of
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microbial spoilage of muscle foods (Ellis and Goodacre, 2001). Until
now, significant progress has been made by innovations in smart
packaging (SP) systems. SP must meet user requirements, such as pro-
viding a rapid, accurate, cost‐effective, and user‐friendly system
(Ahmed et al., 2018). In addition, the integration of smart sensors in
consumer electronics such as a refrigerators is promising for food
quality monitoring in the Internet of Things era (Wijaya and Sarno,
2015). In the last few years, several studies have been conducted to
develop devices and methods to detect beef spoilage. Fourier transform
infrared (FTIR) spectroscopy and e-noses are among the most widely
used analytical instruments for beef quality detection (Argyri et al.,
2010; Balasubramanian et al., 2009, 2004; El Barbri et al., 2008;
Kodogiannis, 2017; Kodogiannis et al., 2015, 2014; Kodogiannis and
Alshejari, 2016, 2014; Mohareb et al., 2016; Najam ul Hasan et al.,
2012; Panigrahi et al., 2006; Papadopoulou et al., 2011, 2013; Zaragozá
et al., 2014). The overall performance of e-noses is not too much dif-
ferent compared to FTIR spectroscopy but e-nose technology is cheaper,
simpler, faster, and more suitable for real-time and online analysis.
Therefore, the development of the e-nose as an apparatus for beef
quality monitoring is relevant.

However, beside the aforementioned advantages, a major drawback
of e-noses is the instability of the sensor response. This is caused by
changes in ambient conditions (temperature and humidity), ambient air
variations, sensor aging, and other physical/chemical processes. In the
e-nose community, the term sensor drift is often used to refer to varia-
tion in the sensor response in identical measurement conditions. From
the perspective of pattern recognition, the terms sensor drift and noise
refer to the same phenomenon because they both lead to inconsistent
data, causing performance degradation. Henceforth, we use the term
noise to refer to instability of the sensor response. In e-nose signal
processing, noise handling is necessary. Several studies have reported
that e-nose signals can be considerably contaminated by noise in severe
conditions (Tian et al., 2005; Wijaya et al., 2016a). The existence of
noise in e-nose signals is inevitable, especially in continuous mon-
itoring. It is a major challenge in computation for classification and
regression tasks. Referring to the explanation above, there were several
motivations to conduct this study:

1. The application of e-noses for beef quality monitoring faces several
challenges. First, the beef spoilage process produces water vapor,
which changes the humidity levels in the sample chamber. These
changes in humidity level can make the sensor response unstable.
Moreover, the sensors are susceptible to poisoning due to exposure
to ethanol and sulphur compounds generated by protein decom-
position (Schaller et al., 1998). Another problem is the possibility of
sensor saturation due to exposure to various gases for a long period
of time. In addition, a recent study found that ambient air variations
largely influence MOS gas sensor stability (Kiselev et al., 2018). This
condition continues during beef storage, so the existence of noise in
e-nose signals is ineluctable.

2. Basically, the probability of success in classification tasks is 1/m
where m is the number of classes. In other words, having a large
number of classes in multiclass classification and having a con-
tinuous output in regression are intricate problems. Performance
degradation occurs when the number of classes increases so the
classifier produces low precision and recall in multiclass classifica-
tion tasks (Wijaya et al., 2017b). Furthermore, signals contaminated
with noise make these tasks more complicated.

3. Hitherto, no study has addressed or focused on the effect of noise
filtering in e-nose signals for beef quality monitoring. On the other
hand, several studies have demonstrated the performance of ma-
chine learning algorithms with data that were contaminated by ar-
tificial noise (Nettleton et al., 2010; Sáez et al., 2014; Zhu and Wu,
2004). Instead of using artificial noise, this study used naturally
generated noise caused by uncontrolled ambient conditions in beef
quality monitoring.

In this study, a noise filtering framework was developed to deal with
e-nose signals contaminated with noise in beef quality monitoring. As the
baseline, methods from previous works were used, i.e. k-NN, SVM, ANN,
ANFIS, and QDA, and their performances were compared when using the
proposed framework. The effect of noise filtering was investigated in
binary and multiclass (three and four classes) classification using the
meat quality standard issued by the Agricultural and Resource
Management Council of Australia and New Zealand (CSIRO Food and
Nutritional Sciences, 2003). In addition, the effect of noise filtering was
also observed in regression tasks. Neural network regression (NNR),
support vector regression (SVR), and ANFIS regression were used to
predict the number of microbial population in beef samples.

The remainder of this paper is structured as follows: Section 2 dis-
cusses related works on beef quality classification, wavelet transform,
and the impact of noise on the performance of machine learning algo-
rithms. Section 3 specifies the materials and methods used in the ex-
periment, including the experimental set-up, the proposed noise fil-
tering framework, and a brief explanation of the machine learning
algorithms that were used in previous works as well as their parameter
settings. Section 4 explains the results of the experiment, the condition
of the sample chamber, the result of signal reconstruction, and the
advantages of using noise filtering in classification and regression tasks.
Finally, Section 5 draws the conclusion of this work.

2. Related works

The first study on the use of e-noses for beef quality assessment was
reported in 2004 (Balasubramanian et al., 2004). A large number of
sensors (28 gas sensors) from a commercial e-nose device were used to
classify fresh and spoiled beef. This study showed that the QDA clas-
sifier could solve this binary classification problem with 98.48% ac-
curacy. Further research was performed using a custom e-nose with
only seven gas sensors accompanied by a temperature and humidity
sensor (Panigrahi et al., 2006). This study showed that QDA still had
the highest classification accuracy (96%). Moreover, SVM could suc-
cessfully detect red meat spoilage (El Barbri et al., 2008); it achieved
98.81% and 96.43% classification accuracy for beef and sheep meat,
respectively. Radial basis function neural network (RBFNN) has been
utilized to detect the freshness of beef, with 92.2% accuracy
(Balasubramanian et al., 2009). In another study, a wireless e-nose was
used to recognize the freshness of beef and fish using k-NN classifiers
(Najam ul Hasan et al., 2012). Multiclass classification has been per-
formed since 2013 (Papadopoulou et al., 2013). In this study, three
sensory classes were distinguished (‘fresh’, ‘semi-fresh’, and ‘spoiled’).
Performing multiclass classification is necessary because it is important
to know when the beef has reached the semi-fresh stage before it spoils
completely. SVM has been reported to be able to differentiate three
classes of beef with more than 85% accuracy (Mohareb et al., 2016;
Papadopoulou et al., 2013). Neuro-fuzzy approaches have been re-
ported to be able to distinguish the quality of beef fillet with 94.28%
accuracy (Kodogiannis and Alshejari, 2016) and 95.71% accuracy
(Kodogiannis, 2017). Related to sensory class determination, Ellis and
Goodacre have stated that the odor was described as ‘dairy/buttery/
fatty/cheesy’ at 107 cfu cm−2 and as ‘spoiled’ when the microbial po-
pulation had reached 108 cfu cm−2 (Ellis and Goodacre, 2001). More-
over, slime and off-odors are correlated with the population of pseu-
domonads to the arbitrary level of 107-8 cfu/g (Nychas et al., 2008). In
the e-nose community, various ranges are used to determine beef sen-
sory classes (Balasubramanian et al., 2009, 2004; El Barbri et al., 2008;
Kodogiannis, 2017; Panigrahi et al., 2006; Papadopoulou et al., 2013).
A more rigorous standard is used for process monitoring in the meat
industry, as shown in Table 3. Four sensory classes are distinguished
and meat is considered safe for consumption if TVC < 5 log10 cfu/g.

In the field of agriculture, metal-oxide semiconductor (MOS) gas
sensors are used for various purposes, such as detection of tea plant
damage caused by pests (Sun et al., 2017), monitoring of soil gas
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emission (Pineda and Pérez, 2017), classifying beef and pork (Wijaya
et al., 2017a), differentiating fish species (Güney and Atasoy, 2015),
and detecting wood decay (Baietto et al., 2013). In addition, MOS gas
sensors are low-cost and less sensitive to moisture than cold gas sensors
(Balasubramanian et al., 2016). Nevertheless, their signal is still sus-
ceptible to contamination with noise. The noise that exists in the gas
sensor output originates from both internal and external sources.
Moreover, external noise can arise in extreme conditions, such as
fluctuating ambient humidity and exposure to ethanol and sulphur
compounds in long-term beef quality monitoring. In a previous study,
the noise magnitude reached 20% in severe conditions (Tian et al.,
2005). Commonly, in the machine olfaction community and the sensory
field, the term sensor drift is used to refer to unpredictable temporal
variations of the sensor response when a sensor array is used in iden-
tical conditions. This can be caused by several factors, such as sensor
aging, sensor poisoning, and environmental changes. Several studies
have been conducted to address sensor drift. A dataset from three years
of observation has been used to investigate the sensor drift phenom-
enon (Vergara et al., 2012). The authors used SVM as an ensemble
classifier, which was trained at different points of time. The combina-
tion kernel function has been used in SVM (Liu et al., 2014). A com-
bination of sparse autoencoder (SAE) and deep belief network (DBN)
has been investigated (Liu et al., 2015). The development of extreme
learning machine (ELM) was proposed for sensor drift compensation
(Zhang and Zhang, 2015). A semi-supervised approach can achieve
favorable performance in dealing with sensor drift (Liu et al., 2014).
Another study not only concerned with sensor drift over time but also
investigated different responses from a multi-device dataset (Yan and
Zhang, 2016). Furthermore, a domain regularized component analysis
(DRCA) method has been introduced to avoid the difference in prob-
ability distribution between source and target dataset causing machine
learning failure (Zhang et al., 2017). Generally speaking, all of these
studies used a long-term dataset with tightly controlled operating
conditions and then developed drift compensation methods. However,
an unstable sensor response does not only occur in long-term utilization
(long-term noise) but also arises when a gas sensor is operated in an
uncontrolled environment in many real measurements.

Several studies have investigated the impact of noise on the per-
formance of machine learning algorithms. From a machine learning
point of view, the type of noise can be differentiated into class noise and
attribute noise (Zhu and Wu, 2004). Class noise is caused by mis-
classification of instances into a wrong class label or the same instance
classified into different classes. Attribute noise is caused by erroneous
attribute values and incomplete attribute values. Unfortunately, dealing

with attribute noise is more complicated because we cannot intuitively
change an attribute value rather than re-labeling an instance to tackle
class noise. The authors state that the highest classification accuracy
can be obtained by using both clean training data and clean testing
data. A study on the impact of noise on the precision of four supervised
learning algorithms (Naïve Bayes, C4.5, k-Nearest-Neighbor, and Sup-
port Vector Machine) in binary classification tasks has been reported
(Nettleton et al., 2010). The experimental results showed that noise in
the training dataset caused the worst performance for all methods.
Another study proposed the use of a decomposition strategy for mul-
ticlass classification to deal with noisy data (Sáez et al., 2014). The
results showed that one-vs-one decomposition yields higher accuracy
and is more robust for multiclass classification of noisy datasets. In
another study, noise filtering methods to deal with class noise in
medical data have been discussed (Sáez et al., 2016). This study con-
firmed that SVM is a robust classifier even without noise filtering.
Nevertheless, noise filtering is still needed when the noise level is high.
It is also stated that the utilization of noise filtering does not always
provide better performance. Hence, proper noise filtering methods are
necessary. For noise filtering, the wavelet transform is a commonly used
method in various areas, for example electroencephalography (Wang
et al., 2011), audio processing (Ridoean et al., 2018; Sarno et al., 2018),
and e-nose signal processing (Hariyanto et al., 2017; Wijaya et al.,
2017c, 2016b; Zanchettin and Ludermir, 2007).

Our study focused on how to deal with noise in e-nose signals and
investigated the influence of noise filtering in beef quality classification
and regression tasks, which has not been addressed in previous studies.
In the experiment, the noise was naturally generated as a result of
changes in ambient conditions to demonstrate a real case instead of
using artificial noise like other studies related to noise impact in-
vestigation (Nettleton et al., 2010; Sáez et al., 2014; Zhu and Wu,
2004). Our hypothesis was: noise filtering can present a significant
improvement on beef quality classification and regression tasks because
the success rate of the classifier depends not only on the learning al-
gorithm but also on the quality of the input data. In this study, a noise
filtering framework was developed based on proper adjustment of
DWT. Table 1 shows a comparison of our study against previous works.

3. Materials and methods

3.1. Materials

MOS gas sensors and a temperature-humidity sensor were used in
the experiment. MOS gas sensors are a type of hot sensor and are less

Table 1
Comparison of the present study with previous studies.

Comparison aspect Present study Previous studies

Noise handling Considered Not considered (Balasubramanian et al., 2009, 2004; El Barbri et al.,
2008; Kodogiannis, 2017; Kodogiannis and Alshejari, 2016; Mohareb
et al., 2016; Najam ul Hasan et al., 2012; Panigrahi et al., 2006;
Papadopoulou et al., 2013)

Standard of beef quality Meat industry guidelines published by Meat Standards Committee
of ARMCANZ (Agricultural and Resource Management Council of
Australia and New Zealand) (CSIRO Food and Nutritional Sciences,
2003; PrimeSafe, 2002)

Unclear standard (Balasubramanian et al., 2009, 2004; El Barbri et al.,
2008; Kodogiannis, 2017; Kodogiannis and Alshejari, 2016; Mohareb
et al., 2016; Najam ul Hasan et al., 2012; Panigrahi et al., 2006;
Papadopoulou et al., 2013)

Number of classes Four classes (regrouped into two and three classes for comparison) Two classes (Balasubramanian et al., 2009, 2004; El Barbri et al., 2008;
Najam ul Hasan et al., 2012; Panigrahi et al., 2006) and three classes
(Kodogiannis, 2017; Kodogiannis and Alshejari, 2016; Mohareb et al.,
2016; Papadopoulou et al., 2013)

Source of noise Generated by uncontrolled environment Artificial noise (Nettleton et al., 2010; Sáez et al., 2016, 2014; Zhu and
Wu, 2004)

Type of noise handled based on
time of occurrence

Short-term noise (unstable sensor response) Long-term noise (gradual changes of sensor response) (Liu et al., 2014;
Vergara et al., 2012; Yan and Zhang, 2016; Zhang et al., 2017; Zhang and
Zhang, 2015)

Investigation of different
number of classes

Considered Not considered (Nettleton et al., 2010; Sáez et al., 2016, 2014; Zhu and
Wu, 2004)
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sensitive to moisture than cold sensors. Hence, they are more suitable
for beef quality monitoring because of the high humidity in the sample
chamber. All sensors and the WiFi-shield for the communication
module were assembled on an Arduino Mega ADK microcontroller. The
casing of the sensor box was made of transparent acrylic material so
that the condition of the device and sample could easily be observed.
The sample chamber was located on the bottom of the sensor array for
faster sensor response. Fig. 1 shows the sensor box used in this ex-
periment.

In the initial experiment, eleven sensors were used to assemble a
custom e-nose sensor box. The sensor array was optimized, reducing the
number of sensors to seven, in our previous work (Wijaya et al., 2016a).
Hence, data produced by only seven sensors were used for the further
processes. Table 2 shows the list of sensors in the optimized sensor
array.

This custom e-nose was designed to detect gasses produced by
mesophilic bacteria in the process of beef spoilage. Mesophilic bacteria
grow optimally at 20–45 °C. Hence, the experiment was conducted at
room temperature, to accelerate the process of beef decay. The data
from the sensor array were recorded and sent to a server every minute
for continuous beef quality monitoring. Hence, the e-nose could record
the beef spoilage process precisely in every stage. It was used to
monitor 500 g of fresh beef, which was placed in the sample chamber.
In this experiment, we used an extra-lean beef as the sample. Fig. 2
shows a scheme of the experimental set-up for data acquisition.

The output of the gas sensors was in the form of analog sensor re-
sistance values. When sent to the server, these analog values were
converted into digital values. The size of the data from each sensor was
1 to 5 bytes. The smallest size occurred when the sensor produced a
single-digit integer. The largest data size occurred for tens with two
numbers behind the comma. The data from the sensor array were
transferred to the WiFi-shield module via a wireless access point to the
computer server during three days of observation. The raw data were
received by a TCP/IP socket server on a virtual port of the computer

server. Then, the data were parsed and stored by self-developed mid-
dleware in a MySQL database for further analysis. Based on this me-
chanism, the process of beef spoilage could be monitored in real-time
and data for training and testing could be collected. The total number of
data from this experiment was 4720 records. The beef sample began to
spoil at 680min, so the data were dominated by the ‘spoiled’ beef class
(74%). The utilization of a dataset with class imbalance causes high
accuracy but low recall and precision in the minority classes. We strived
to make sure that no particular class had distribution greater than 50%.
Therefore, we performed undersampling by taking 1400 data, from
when the meat was still fresh until it was rotting, so that no class
dominated the distribution over 50%. In addition, this way we could
also make sure that all data were within class boundaries because they
are susceptible to misclassification. The dataset consisted of 1400 re-
cords/instances from one beef sample, divided into training data and
testing data. In this study, the meat standard issued by the Agricultural
and Resource Management Council of Australia and New Zealand
(CSIRO Food and Nutritional Sciences, 2003) was used. In this stan-
dard, the grade of meat is distinguished into four categories according
to the total viable count (TVC), as shown in Table 3.

The signals that were generated by the sensor array during the beef
spoilage process were labeled using the procedure described below.
Suppose we have an instance of feature subset X withm attributes from
the sensor array given by:

=X x x class .m j1 (1)

where classj is a particular class label from the class domain. For clas-
sification, an instance can have c possible class labels (Class), which is
expressed as follows:

= +Class class class c Z{ , },c1 (2)

where =c 2 means binary classification and >c 2 means multiclass
classification. In this experiment, the effect of noise filtering on elec-
tronic nose signals was observed for various numbers of classes in a beef
classification task. E-nose signals are time series data that represent the
quality of the beef according to its shelf-life. In this study, the holdout
method was used to divide the dataset in training data and testing data.
In the i-th class, the training data for every feature subset (Xi) was about
half ( X

i
1
2 ) and the remaining half were used as testing data (X Xi i

1
2 ),

where (X classi i). The data were randomly selected from each class
for training and testing. The training data and the testing data were
rotated in two different experiments. This was to ensure that the results
of the experiment would be fair and objective. Fig. 3 illustrates the
partition of the dataset in this experiment.

In accordance with previous studies, the dataset was also regrouped
for classification into two and three classes. Thus, we investigated the

Fig. 1. Sensor box: (a) top view; (b) bottom view.

Table 2
Gas sensors used in the experiment.

Alias Sensor Selectivity

S1 MQ135 Carbon dioxide, alcohol, ammonia, NOx, smoke, benzene
S2 MQ136 Hydrogen sulfide
S3 MQ2 Alcohol, hydrogen, smoke, Liquefied petroleum gas (LPG),

methane, i-butane, propane
S4 MQ4 Methane
S5 MQ6 Iso-butane, propane, LPG
S6 MQ9 Carbon monoxide, methane, and propane
S7 DHT22 Temperature and humidity
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ability of our proposed framework to improve the performances from
past studies for binary and three-class classification. The ground truth
data refer to the size of the microbial population in the gold standard of
beef quality. In this experiment, optical density was measured by a
spectrophotometer with 1000x dilution. After this, a hemocytometer
was used to quantify the microbial population. The combination of the
classical and the two-hour method was used as a rule of thumb (Harley
and Prescott, 2002). The ground truth data were utilized to determine
the class labels. The scenario of class labeling can be seen in Fig. 4.

According to Fig. 4, beef quality can be divided into ‘fresh’ and
‘spoiled’ for binary classification. The members of the ‘fresh’ class were
obtained by grouping together the classes ‘excellent’ (E), ‘good’ (G),
and ‘acceptable’ (A) ( E G A fresh{ , , } ), while the members of the
‘spoiled’ (S) class were kept into the same class (S spoiled). Three
classes (‘fresh’, ‘semi-fresh’, and ‘spoiled’) were formulated by grouping
together the members of ‘good’ and ‘acceptable’ classes into ‘semi-fresh’
( G A semifresh{ , } ), while the remaining classes were mapped into
‘fresh’ and ‘spoiled’ (E fresh and S spoiled).

In the regression task, several machine learning algorithms were
used to predict continuous values that correspond to the size of the
microbial population instead of the discrete output from the classifi-
cation task. Moreover, the effect of noise filtering on the regression is
more evident when a large amount of data is used. Hence, a large
amount of detailed ground truth data were needed to predict the size of
the microbial population in the beef sample. In the experiment, the
observed number of the microbial population was based on the data
generated by DMFit (www.combase.cc), a tool that has adopted the

primary model of Baranyi (Baranyi and Roberts, 1994). Thus, almost
the same dataset was used except for the continuous label. This dataset
was used to investigate the effect of noise filtering on the regression
task. The holdout method was used to split the dataset into data for
training and data for testing in a balanced way. Our complete raw
dataset is also available online (Wijaya et al., 2018).

3.2. Methods

3.2.1. Proposed noise filtering framework
In this subsection, we discuss the steps of e-nose signal processing.

Here, noise filtering is key to improving the quality of input data. Fig. 5
shows the proposed noise-filtering framework for e-nose signals.

DWT was used to reconstruct the raw signals contaminated with
noise. The DWT of signal x t( ) can be mathematically expressed by the
following equation (Gao and Yan, 2011):

= =DWT v w x t t x t t w dt( , ) ( ), ( ) 1
2

( ) 2
2v w v

v

v,
(3)

where v and w are the scaling parameter and the shifting parameter,
respectively. The scaling parameter establishes the time and frequency
resolution of the scaled mother wavelet (MWT). The scaled MWT is
represented by t w(( 2 ) 2 )v v . The value of the scaling parameter is
inversely proportional to the frequency. A higher value of v means a
lower frequency and vice versa. Shifting parameter w moves the scaled
MWT along the time axis. When performing DWT, the level of de-
composition and the type of wavelet function are the two most influ-
ential parameters on the changes of the signal’s structure (Wijaya et al.,
2016c). Fig. 6 depicts the detailed steps of parameters adjustment for
noise filtering to determine the wavelet decomposition levels and the
best-suited MWTs.

The scaling parameter corresponds to the decomposition level in
signal reconstruction. A lower frequency needs more decomposition.
Hence, the first thing to do is to set the correct decomposition level,
because an improper decomposition level leads to signal defects caused
by a mismatch between the reference frequency range and the fre-
quency characteristic of the signal. The proper decomposition level can
be determined by the following rule (Gao and Yan, 2011):

+
F

F
F

2 2
sample
level char

sample
level1 (4)

where Fchar ,Fsample,level indicate frequency characteristic, frequency
sampling, and decomposition level, respectively. The advantage of the
wavelet transform is the abundance of MWTs that can be used.

Fig. 2. The scheme of experiment.

Fig. 3. Partition of the dataset.
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However, this will raise the question which MWT to choose for signal
reconstruction. Thus, the second problem is: which MWT is the best-
suited. In the present study, the main principle of noise filtering is
signal reconstruction without losing essential information. The in-
formation quality ratio (IQR) was used to find the best-suited MWT for
a particular signal (Wijaya et al., 2016c). The IQR value between the
original/raw signal (x t( )) and the reconstructed signal (y t( )) is given
by:

=IQR x t y t
p x y log p x p y
p x y log p x y

( ( ), ( ))
( , ) ( ( ) ( ))
( , ) ( ( , ))

1x y

x y

, 2

, 2 (5)

x , y, p x( ), p y( ), p x y( , ) are the element of the original signal, the
element of the reconstructed signal, the marginal probability of x , the
marginal probability of y, and the joint probability of x and y, re-
spectively. Several MWTs are compared, where the highest IQR value
indicates the MWT that is best-suited for the signal. In the sensor array
signal processing, the IQR values of m signals reconstructed by n dif-
ferent MWTs can be illustrated by the following matrix.

=×IQR

IQR IQR IQR
IQR

IQR
IQR IQR IQR

. . . . . .
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. . . . . .
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11 12 1

21

1
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Fig. 4. Scenario of beef class labeling (two, three, and four classes).

Fig. 5. The proposed noise filtering framework. The rounded rectangles re-
present input/output data. The blue rectangles are algorithms. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 6. Detailed steps of noise filtering: (1) set the proper wavelet decomposition levels (determine scaling parameter (v)); (2) IQR calculation between original (x t( ))
signal and reconstructed (y t( )) signal; (3) build the IQR matrix ( ×IQRm n); (4) determine the best-suited scaled MWTs using the argument of maxima for each signal
based on the IQR matrix; (5) signal reconstruction using the best-suited scaled MWTs.
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Based on above matrix, the chosen scaled MWT for a particular
signal (x t( )i ) is determined by the largest IQR value against re-
constructed signal (y t( )i

j ). Where, i and j are the index of the signals
and the index refers to the MWT used to reconstruct the signal, re-
spectively. The scaled MWTs of each signal ( t w(( 2 ) 2i

v
i

vi i)) are in-
fluenced by translation parameter (wi) and scaling parameter (vi), cor-
responding to the level of wavelet decomposition. Hence, the best-
suited scaled MWTs for each signal can be determined according to
argument of maxima of the IQR function as follows:

=t w IQR x t y t i m j n(( 2 ) 2 ) argmax { ( ( ), ( ))}, ,i
v

i
v

j
i i

ji i

(6)

Based on these adjustments, the proper noise filtering was per-
formed to ensure the quality of the input data. The wavelet decom-
position level, the best-suited MWT, and the result of signal re-
construction are explained in the next section. In this study, the
magnitude of a particular value of the reconstructed signal (y t( )) was
computed according to the following equation:

= ×y y y t
y t y t

cmin ( ( ))
max ( ( )) min ( ( ))

( 1)
(7)

where y and c correspond to the new scaled value of y and the number
of possible class labels, respectively. The complete pseudocode of the
proposed noise filtering framework is as follows:

Algorithm 1 (Noise filtering framework).

3.2.2. k-Nearest Neighbor
k-NN is a type of instance-based learning that compares testing data

with training data to determine their similarity, where similarity means
the ‘closeness’ between both data sets, which is measured using a dis-
tance metric, e.g. Euclidean, city block, Chebyshev, Mahalanobis, etc.
In this experiment, we set =k 5 and used Euclidean distance referring
to a previous work (Najam ul Hasan et al., 2012).

3.2.3. Support vector Machine
SVM uses an optimal hyperplane to separate data with different

classes. Several kernel functions can be used, such as a second-order
polynomial or a radial basis function (RBF), to deal with the beef
classification problem (El Barbri et al., 2008; Mohareb et al., 2016;
Najam ul Hasan et al., 2012; Papadopoulou et al., 2013). In this

experiment, multiclass SVM with RBF kernel was used to investigate the
effect of noise filtering, where the value of regularization parameter (C)
and gamma (γ) were set to 1 and 2, respectively. In MATLAB, the de-
fault values of C and γ are 1. We set C=1 and γ=2 because this yields
more stable and better results than the default value (γ=1) based on
cross validation.

3.2.4. Quadratic discriminant analysis
In previous works, the use of QDA to differentiate fresh and spoiled

beef has been reported (Balasubramanian et al., 2004; Panigrahi et al.,
2006). QDA is a type of discriminant classifier akin to linear dis-
criminant analysis (LDA). However, unlike LDA, QDA assumes that
different classes have different covariance matrices (James et al., 2013).
In this method, two or more classes ( =class i c, 1, 2, ,i ) are separated
by a quadratic surface. The quadratic discriminant function is com-
puted by:

= +x log x µ x µ log( ) 1
2

| | 1
2

( ) ( ) (class class class
T

class class class
1

i i i i i i

(8)

where µ, ,class class classi i iare the covariance matrix, the mean vector, and
the prior probability of membership of the i-th class, respectively. The
QDA classifier involves plugging estimates for µ, ,class class classi i i and
assigning x to the class with the highest value of x( )classi. Hence, the
class label (class) of x can be determined by:

= =class x i cargmax ( ) , 1, 2, ,
class

class
i

i
(9)

where c is the total amount of possible class labels.

3.2.5. Artificial neural network
ANN is a layered model classifier that processes data layer-by-layer

to determine the predicted class label. Each layer consists of several
neurons, which transform the data based on their connection weights
and activation function. In this study, a multilayer perceptron with a
single hidden layer was used. The size of the input, the hidden, and the
output layer were 7, 24, and 4, respectively. The sigmoid activation
function was used in the hidden layer, while the softmax activation
function was used in the output layer. This neural network architecture
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refers to the architecture that was used in a previous work to investigate
the effect of noise filtering (Najam ul Hasan et al., 2012).

3.2.6. Adaptive Neuro-Fuzzy inference system
In previous studies, the combination of an e-nose and ANFIS has

been reported for satisfactory performance to classify three grades of
beef quality (Kodogiannis, 2017; Kodogiannis and Alshejari, 2016). In
this work, a first-order Sugeno model and a Gaussian membership
function were used to construct the ANFIS.

3.2.7. Neural network regression
The architecture of NNR is the same as a neural network for clas-

sification that consists of an input layer, one hidden layer, and an
output layer. The difference is only one neuron in the hidden layer with
a linear activation function to accommodate the continuous output for
the regression task.

3.2.8. Support vector regression
The regression problem is more intricate for signals that are con-

taminated by noise. In this experiment, a large value of parameter C
was used to penalize any misclassified data points. In other words, the
regressor is pushed harder to deal with noisy data in the regression task.
Meanwhile, γ is kept low to avoid overfitting by ensuring a broader
decision region. For the ε parameter, the default value was used.
Epsilon support vector regression (ε-SVR) was used to predict the
number of the microbial population. The RBF kernel was utilized to
deal with non-linear data. The values of C, ε, and γ were set to 1000,
0.1, and 0.1, respectively.

3.2.9. ANFIS regression
The use of ANFIS for regression is similar to its application in the

classification problem. The ANFIS final layer is a summation of all in-
puts from the previous layer, which naturally generates real numbers.
Hence, we do not provide a further explanation about the use of ANFIS
in the regression tasks.

In this experiment, DWT, k-NN, SVM, QDA, and ANFIS were im-
plemented in MATLAB 2015a. DWT uses the Wavelet Toolbox. k-NN,
SVM, QDA use the Statistics and Machine Learning Toolbox. ANFIS uses
the Fuzzy Logic Toolbox. The neural networks were built based on open
source framework Deeplearning4j (DL4J) for more complete and flex-
ible implementation (Deeplearning4j Development Team, 2017). SVR
was implemented using LIBSVM as a library for support vector machine
in MATLAB 2015a (Chang and Lin, 2011).

3.2.10. Performance measures
Several metrics were used to measure the performance of the ma-

chine learning algorithms in the classification and regression tasks. For
the classification problem, accuracy, precision, and recall were used to
measure the performance of the classifiers. Table 4 shows a detailed
explanation of these metrics. In this table, tp tn fp fn, , , denote true po-
sitive, true negative, false positive, and false negative, respectively. Based
on these metrics, the performance can be measured not only to know
the overall accuracy but also how good the system can detect a parti-
cular class of beef.

To measure the performance of the machine learning algorithms in
the regression task, the following metrics were used: root mean squared
error (RMSE), R-squared (R2), adjusted R-squared (adjusted R2), bias
factor (Bf ), accuracy factor (Af ), mean relative percentage residual
(MRPR), and mean absolute percentage residual (MAPR). A detailed
explanation of these metrics is given in Table 5. The symbols y y p L, , ,
denote actual value vector, prediction result vector, number of pre-
dictors, and total number of samples, respectively. In this study, actual
value vector refers to the observed number of the microbial population
and prediction result vector refers to the outputs of the regression
analysis.

4. Results and discussion

In this section, the conditions in the sample chamber are described
in relation to changes in temperature and humidity. Subsequently, the
signal reconstruction results are discussed. Furthermore, the perfor-
mances of the machine learning algorithms using the noise filtering
framework and without using the noise filtering framework (non-fra-
mework) are compared based on the dataset discussed above. In the
case of non-framework, the signals contaminated with noise were only
normalized to equalize the scale before being consumed by the machine
learning algorithms.

4.1. Changes in temperature and humidity in the sample chamber

In the experiment, we also monitored the temperature and humidity
during the beef spoilage process. Fig. 7 shows the changes of tem-
perature and humidity in the sample chamber. The starting temperature
was 33.5 °C. The temperature tended to increase during the spoilage
process, reaching a maximum of 39.8 °C. The temperature rise was also
affected by the gas sensors generating heat. Apart from that, tempera-
ture changes during day and night also affected the temperature,
making the changes in temperature unstable. The initial relative hu-
midity was 55.1%. The changes in humidity were affected by water
vapor produced in the beef spoilage process, causing the humidity to
rise to 82.9% when the beef sample was rotting. Hence, this un-
controlled environment was a source of noise because it affected the
sensor response.

4.2. Signal reconstruction

First, the most appropriate decomposition level has to be de-
termined. Then, the IQR values are calculated and compared to each

Table 3
Beef quality standard.

Class Total viable count (log10 cfu/g)

Excellent (E) < 3
Good (G) 3–4
Acceptable (A) 4–5
Spoiled (S) < 5

*cfu/g: colony forming unit of bacteria in one gram of meat

Table 4
Performance metrics for classification.

Metric Equation Description

Accuracy (%) = ×+
+ + +accuracy 100tp tn

tp tn fp fn
Accuracy is used to measure the ratio of identification success for all classes against overall testing results.

Precision (%) = ×+precision 100tp
tp fp

Precision is used to measure the capability of the classifier to detect a valid prediction against the number of all predictions of
this class. For instance, the numbers of correct predictions of fresh beef are divided by all samples that are identified as fresh beef
even though some of them are actually spoiled.

Recall (%) = ×+recall 100tp
tp fn

Recall measures the ratio between the number of correct predictions for a particular class and the actual number of this class. For
example, the number of valid predictions as fresh beef is divided by the total number of samples of real fresh beef.

D.R. Wijaya et al. Computers and Electronics in Agriculture 157 (2019) 305–321

312



reconstructed signal using a particular MWT. In this experiment, 38
MWTs were compared, i.e. biorthogonal (bior1.1, bior1.3, bior1.5,
bior2.2, bior2.4, bior2.6, bior2.8, bior3.1, bior3.3, bior3.5, bior3.7,
bior3.9, bior4.4, bior5.5, bior6.8), symlet (sym2-sym8), coiflet (coif1-
coif5), daubechies (db1-db10), and dmey. With Eqs. (4) and (5), the
wavelet decomposition level and the best-suited MWT can be de-
termined. The results of signal reconstruction based on DWT were used
in the further processes. Table 6 shows the best-suited MWTs and de-
composition levels for each signal corresponding to each sensor.

Fig. 8 shows the original and the reconstructed signals corre-
sponding to the gas sensors. All of the sensor responses changed pro-
gressively during the beef spoilage process. The existence of biomarkers
such as CH4, H2S, NH3, and CO2 caused decreased sensor resistance.
However, the signals were contaminated with a great deal of noise.
Hence, signal reconstruction was performed by considering the quality

of the information that corresponds to a proper wavelet decomposition
level and the best-suited MWT for each signal. The meat spoilage bio-
markers had increasing concentrations during the spoiling process
(800–1000min) as shown in Fig. 8a–d, and f. The ambient humidity
also increased during the beef spoilage process, as shown in Fig. 8g.
Conversely, the resistance of S5 increased, which means the con-
centrations of LPG, iso-butane, and propane became smaller when the
beef was decaying.

4.3. Binary classification

Binary classification divides the beef samples into two classes:
‘fresh’ and ‘spoiled’. The indicators to differentiate fresh from rotten
beef are high concentrations of CH4, H2S, NH3, and CO2 produced by
spoiled beef. Hence, binary classification is the simplest problem in beef
quality classification because there is only one class boundary with
significant differences in concentration of the biomarkers (Wijaya et al.,
2016b).

Table 7 shows a performance comparison between several machine
learning algorithms with and without using the proposed noise filtering
framework. The noise filtering framework gave a small improvement of
classification accuracy for SVM but had no impact on k-NN and pro-
duced a slight performance decrease in ANN and ANFIS. QDA had the
worst performance compared to the other algorithms. Noise filtering
could not be performed on QDA because it causes a singular covariance
matrix in multivariate data (determinant equals zero). Another obstacle
is the near-zero variance predictors for a particular class caused by
noise reduction. Nevertheless, the accuracies were satisfactory, either
using or not using the noise filtering (greater than 90%), except for
QDA (77.79%). The utilization of the noise filtering framework in k-NN
had no impact on its accuracy, which remained at 93.64%. In SVM it
resulted in a small accuracy enhancement of only 1.07%. Performing
noise filtering in ANN and ANFIS even slightly decreased the perfor-
mance (1.29% and 3.85% respectively). These results indicate that
noise filtering does not provide satisfactory performance improvements
in binary classification tasks.

4.4. Three-class classification

In the three-class classification task, the beef quality was divided
into ‘fresh’, ‘semi-fresh’, and ‘spoiled’. Having more classes and more
boundaries implies that this task is more complicated than binary
classification. The performance of the noise filtering framework is de-
tailed in Table 7. Without noise filtering, the recall values of ‘fresh’
were low (ranging between 48.86% and 64.69%) and so were the
precision values of ‘semi-fresh’ (ranging between 60.83% and 71.73%).

Table 5
Performance metrics for regression.

Metric Equation Description

RMSE
= =RMSE y y( , ) i

L yi yi
L

1( )2 RMSE is used to measure the difference/error between actual and prediction vectors. A lower RMSE value means less
difference between the actual and the prediction value.

R2
= =

=
R y y( , ) 1 i

L yi yi

i
L yi y

2 1( )2

1( ¯)2

R-squared represents the parts of the variance of the actual vector that can be predicted by the regression model. Typically,
it ranges from 0 to 1. R2 equals 1 means that the regression model can correctly predict the actual value and vice versa. If R2

is negative, it means that the regression model does not follow the trend of the actual data.
Adjusted R2 =R y y R y y¯ ( , ) ( , ) R y y p

L p
2 2 (1 2 ( , ))

1
Adjusted R2 is an extension of R2 to avoid bias caused by an increase of the number of predictors. The range is the same as
for R2 but the value is usually lower than R2.

Bf
= =B y y exp( , )f

i
L yi yi

L
1(ln( ) ln( )) Bias factor denotes whether the predictions are under- or overestimated against the actual values. An unbiased prediction is

indicated by Bf equals 1. <B 1f means the prediction result is lower than the actual value (underestimated) and vice versa
(Baranyi et al., 1999).

Af
= =A y y exp( , )f i

L yi yi
L

1(ln( ) ln( ))2 The accuracy factor measures the average accuracy of the prediction model. The value of Af is equal to or greater than 1. A
value larger than 1 indicates less accurate prediction results (Baranyi et al., 1999).

MRPR (%) = =
×RPR y yM ( , ) L i

L yi yi
yi

1
1

( ) 100 MRPR verifies the percentage of over- or under-prediction from the residual point of view. If the value is 0 it means there is
no residual between the actual and the predicted value. MRPR < 0 indicates over-prediction and vice versa.

MAPR (%) = =
×APR y yM ( , ) L i

L yi yi
yi

1
1

| | 100 The absolute value of MAPR provides information about the percentage of average deviation between the actual and the
predicted values. A lower MAPR indicates a lower absolute residual between the actual and the predicted values.

Fig. 7. Changes in temperature and humidity in the sample chamber.

Table 6
MWTs and decomposition levels of DWT for e-nose signals noise filtering.

Sensor MWT Decomposition level

S1 bior2.4 11
S2 bior3.3 11
S3 db1 11
S4 db1 10
S5 bior2.2 11
S6 db1 10
S7 db6 10
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These low precision and recall values were caused by many ‘fresh’ beef
samples being misclassified as ‘semi-fresh’. On the other hand, the recall
and precision values of spoiled beef were relatively higher without

noise filtering. In three-class classification, the effect of noise filtering
was more significant than for binary classification. Almost all the ma-
chine learning algorithms got a performance improvement; most of the

Fig. 8. Comparison of original and reconstructed signals. The shaded magenta line and the black line are the original and the reconstructed signal, respectively. (a) S1
(b) S2 (c) S3 (d) S4 (e) S5 (f) S6 (g) S7. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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accuracy, precision, and recall values increased. According to the ex-
periment, the recall values of the ‘fresh’ class were significantly im-
proved for ANN (from 64.69% to 89.86%) and ANFIS (from 48.86% to
66.78%). Moreover, the precision values of the ‘semi-fresh’ class also
increased for SVM (from 60.83% to 66.21%), ANN (from 71.73% to
76.18%), and ANFIS (from 68.5% to 84.06%). With the exception of k-
NN, the accuracy of all machine-learning algorithms increased: SVM
from 82.43% to 86%, ANN from 88.64% to 91.57%, and ANFIS from
83.64% to 90.43%. These results indicate that the accuracy improve-
ments of SVM, ANN, and ANFIS were 3.28%, 2.93%, and 6.79%, re-
spectively. Thus, the proposed noise filtering framework gives more
improvement in three-class classification tasks than in binary classifi-
cation tasks. In the case of QDA, the same happens as in binary clas-
sification, namely noise filtering leading to a singular covariance ma-
trix.

4.5. Four-class classification

In four-class classification, the quality of the beef was categorized
into ‘excellent’, ‘good’, ‘acceptable’, and ‘spoiled’. This is more com-
plicated than binary and three-class classification because there are
more boundaries between classes, which increases the possibility of
wrong predictions. Table 7 details the performance of noise filtering in
four-class classification. Without noise filtering, the recall values for
‘excellent’ ranged between 54.84% and 65.03%, the recall values for
‘good’ ranged between 32.08% and 83.49%, and the recall values for
‘acceptable’ ranged between 0% and 47.47%. Overall, the recall and
precision values for ‘spoiled’ were relatively high. The recall values
ranged between 78.94% and 96.55% and the precision values ranged
between 77.73% and 99.29%. These results indicate that all machine
learning algorithms perform badly when distinguishing between ‘ex-
cellent’, ‘good’, and ‘acceptable’ beef if the signal is contaminated with
noise. The noise filtering framework can be used successfully to deal
with this issue. According to the experimental results, performance
improvements were obtained by all machine learning algorithms, ex-
cept QDA because, as in the previous two cases, the noise filtering leads
to a singular covariance matrix, or near-zero variance predictors for a
particular class. The increased accuracy for k-NN, SVM, ANN, and
ANFIS was 15%, 16.57%, 15.08%, 20.29%, respectively. These results
imply that the influence of the noise filtering framework in four-class

classification is more significant than for binary and three-class classi-
fication. It could significantly improve the recall values of ‘excellent’ for
ANN (from 65.03% to 89.86%) and ANFIS (from 54.84% to 97.55%).
Improvements also occurred for the recall of ‘acceptable’. Large recall
improvements occurred for k-NN (from 47.47% to 97.45%), SVM (from
10.88% to 89.78%), ANN (from 46.74% to 74.09%), and ANFIS (from
4.01% to 66.92%). The precision improvements of ‘good’ were also
significant for k-NN (from 47.42% to 73.97%), SVM (from 27.97% to
71.88%), ANN (from 15.29% to 76.38%), and ANFIS (from 35.67% to
88.7%). The performances of the layered model machine learning al-
gorithms (ANN and ANFIS) had the highest classification accuracy (ca.
88%) and thus are promising for multiclass classification. Moreover,
there is still some space for improvement regarding the tuning of the
hyperparameter in the layered models.

4.6. Trend of machine learning algorithm performance in classification
tasks

Fig. 9 shows the performance trend of the machine learning algo-
rithms. It also compares the performance when using the framework
and when not using the framework for two, three, and four classes of
beef. The performance difference between framework and non-frame-
work was small in binary classification. There was a slight increase for
one algorithm but a small decrease or no effect for the others. Typically,
if the number of classes increases, the performance will deteriorate.
This is shown by the non-framework trend of accuracy, precision, and
recall: the performance indicates a downward trend. It decreased with
three classes and got worse with four classes. This happens to all ma-
chine learning algorithms when consuming e-nose signals that are badly
contaminated with noise. The performance gaps between framework
and non-framework were higher in multiclass classification. The per-
formance improvements were more significant and more stable when
the number of classes increased. The noise filtering framework im-
proved accuracy, precision, and recall. These results indicate that the
noise filtering framework can mitigate severe performance degradation
when the number of classes increases. For multiclass classification,
ANFIS and ANN provide the best performance to classify several grades
of beef. In contrast, QDA produces the worst performance and applying
noise filtering in this case is unfavorable because it can lead to a sin-
gular covariance matrix, which means that the determinant equals zero.

Table 7
Performance comparison of machine learning algorithms without and with proposed framework (average accuracy, precision, and recall).

The
number of
classes

Class labels Performance
metrics (%)

k-NN
without
framework

k-NN with
framework

SVM
without
framework

SVM with
framework

QDA
without
framework

QDA with
framework

ANN
without
framework

ANN with
framework

ANFIS
without
framework

ANFIS with
framework

Two
classes

fresh precision 89.95 88.38 87.31 88.38 79.28 N/A 90.50 88.38 89.95 88.38
recall 98.05 100 99.48 100 86.62 N/A 99.74 100 100 94.94

spoiled precision 97.73 100 99.37 100 87.68 N/A 99.68 100 100 94.49
recall 90.89 89.04 87.68 89.04 74.38 N/A 91.50 89.04 90.89 89.04

accuracy 93.64 93.64 92.57 93.64 77.79 N/A 94.93 93.64 94.71 90.86
Three

classes
fresh precision 100 100 100 100 92.51 N/A 100 100 70.86 100

recall 62.59 62.59 62.59 62.59 62.24 N/A 64.69 89.86 48.86 66.78
semi-fresh precision 67.61 66.21 60.83 66.21 67.12 N/A 71.73 76.18 68.50 84.06

recall 96.90 100 99.79 100 67.36 N/A 99.59 100 75.14 91.94
spoiled precision 97.73 100 99.84 100 85.16 N/A 99.68 100 96.24 94.49

recall 90.89 89.04 83.00 89.04 93.49 N/A 93.10 89.04 100 100
accuracy 86.00 86.00 82.43 86 78.07 N/A 88.64 91.57 83.64 90.43

Four
classes

excellent precision 100 100 100 100 89.44 N/A 100 100 85.71 100
recall 62.59 62.59 62.59 62.59 62.59 N/A 65.03 89.86 54.84 97.55

good precision 47.42 73.97 27.97 71.88 0.00 N/A 15.29 76.38 35.67 88.7
recall 55.65 100 83.49 100 32.08 N/A 49.52 99.53 56.36 100

acceptable precision 35.54 67.04 67.31 64.11 0 N/A 12.15 70.91 8.21 62.61
recall 47.47 97.45 10.88 89.78 0 N/A 46.74 74.09 4.01 66.92

spoiled precision 97.73 100 96.31 100 77.73 N/A 99.29 99.07 86.37 94.49
recall 90.89 89.04 78.94 85.59 83.74 N/A 96.55 92.24 94.33 89.04

accuracy 70.50 85.5 65.43 82 50.14 N/A 73.21 88.29 68.64 88.93

Notes: is lower result. is higher result. is equal result.
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In Eq. (8), the log of a zero determinant means that the function cannot
be executed. An increasing number of classes will be a problem because
QDA has a separate covariance matrix for every class. This assumption
is more likely to generate singular covariance matrices than LDA.
Hence, QDA is not recommended for multiclass classification.

4.7. Comparison of different parameters

This study did not focus on parameter optimization but a compar-
ison of different parameters used in k-NN, SVM, and ANN is provided as
proof of the noise filtering framework’s effectiveness. For k-NN, the
value of k was tested on [1, 2, , 15]. We found that the changes of k did
not have a significant effect when the noise filtering framework was
applied. Thus, we set k=5 to investigate this effect with different
distance metrics. It is enough to represent the results of the experiment
in general. Table 8 shows a comparison of the accuracy for four distance
metrics (Euclidean, city block, Chebyshev, and Mahalanobis). The re-
sults indicate that the noise filtering framework can provide a sig-
nificant improvement in four-class classification. For SVM, we tested

=C [10 , 10 , , 10 ]2 1 7 . The changes of C did not have a significant
impact when noise filtering was used. Hence, we set C=1 to compare
several kernel functions, i.e. linear, quadratic, third-degree polynomial
and RBF, as shown in Table 9. The results show that the noise filtering
framework could improve the accuracy in binary and multiclass clas-
sification for SVM classifiers. Satisfactory improvement was obtained in
multiclass classification. Changes of k in k-NN and C in SVM could not

provide significant improvements because the data were well-separated
as a result of the noise filtering. Table 10 shows the performance of
ANN using several activation functions, i.e. sigmoid, hyperbolic tangent
(tanh), rectified linear unit (ReLU), and softplus. The results show that
the noise filtering framework could not provide improvement in binary
classification, whereas it could produce better performance in multi-
class classification. These results confirm that the proposed noise fil-
tering framework can provide performance improvement of different
parameters in the machine learning algorithms.

4.8. Effect of noise filtering on regression task

In this study, regression analysis was utilized to predict the number of
bacteria in beef samples (TVC) in accordance with beef quality. Fig. 10
shows a plot of actual and predicted TVC values using NNR. Fig. 10a
shows the performance of NNR without noise filtering (non-framework).
It shows that there is no proper distribution around the line of equity
(y=x) within the±1 log unit area. The residual plot in Fig. 10b also
indicates a linear pattern of the residual values. This indicates that the
model cannot capture linear information during prediction of the size of
the microbial population. The regression result shows that NNR cannot
correctly model the signals contaminated with noise. The utilization of
the noise filtering framework provides better performance, as shown in
Fig. 10c. The trend follows the line of equity, even though not perfectly.
The residual plot in Fig. 10d also shows a more random pattern com-
pared with Fig. 10b. This means that there is not much leakage of linear

Fig. 9. Performance comparison and trends of various machine learning algorithms in beef classification tasks: (a) accuracy (b) precision (c) recall.

Table 8
Effect of noise filtering framework on k-NN with different distance metrics.

Accuracy (%) Two classes Three classes Four classes

Euclidean City block Chebyshev Mahalanobis Euclidean City block Chebyshev Mahalanobis Euclidean City block Chebyshev Mahalanobis

Non-framework 93.64 93.36 94.14 63.21 86.00 85.71 86.93 44.43 70.50 70.14 70.86 44.14
Framework 93.64 93.64 93.64 75.29 86.00 86.86 85.86 58.00 85.50 86.50 85.86 54.71
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information to the residual compared to non-framework. Table 11 shows
a quantitative comparison between non-framework NNR and NNR with
framework. RMSE denotes the prediction error, which shows the differ-
ence between actual and predicted values. RMSE was reduced from
2.556 to 0.519 for overall prediction. Furthermore, R2 and adjusted R2

also showed superior results for NNR with framework (0.953) compared
to non-framework NNR (0.771). These results indicate that noise filtering
can reduce errors and improve the agreement between predicted and
actual data. The Bf of non-framework NNR indicates that the regression
model produced overestimated results for ‘excellent’, ‘good’, and ‘ac-
ceptable’ but yielded underestimated predictions after the beef had

started to spoil. Meanwhile, NNR with framework also had over-
estimated results for ‘excellent’, ‘good’, and ‘acceptable’ but nearly per-
fect results in the spoiled stage (0.982) as well as overall Bf (1.011).
According to the experimental results, NNR with framework had better
Af than non-framework NNR, except for the ‘acceptable’ class. Overall,
Af improved from 1.458 to 1.1. Moreover, MRPR exhibited vast under-
prediction for non-framework NNR (25.249%) but slight overprediction
when using the noise filtering framework (-1.586%). The overall MAPR
value for non-framework NNR was also higher (30.574%) than for NNR
framework (7.388%). This indicates that NNR with framework has a
lower deviation.

Table 9
Effect of noise filtering framework on SVM with different kernel functions.

Accuracy (%) Two classes Three classes Four classes

Linear Quadratic Polynomial-3 RBF Linear Quadratic Polynomial-3 RBF Linear Quadratic Polynomial-3 RBF

Non-framework 92.71 88.50 85.64 92.57 76.07 71.29 78.43 82.43 50.29 58.71 70.93 65.43
Framework 93.64 93.64 86.29 93.64 86.00 73.93 77.71 86.00 82.21 81.79 80.36 82.00

Table 10
Effect of noise filtering framework on ANN with different activation functions.

Accuracy (%) Two classes Three classes Four classes

Sigmoid Tanh ReLU Softplus Sigmoid Tanh ReLU Softplus Sigmoid Tanh ReLU Softplus

Non-framework 94.93 94.93 95.36 94.93 88.64 88.00 88.08 87.29 73.21 78.07 78.50 79.22
Framework 93.64 93.65 93.65 93.65 91.57 87.50 89.36 88.79 88.29 85.36 85.50 85.65

(a) (b)

(c) (d)
Fig. 10. Prediction of the number of the microbial population using NNR. Red, green, blue, and black marks indicate ‘excellent’, ‘good’, ‘acceptable’, and ‘spoiled’
beef, respectively. (a) non-framework NNR, (b) residual of non-framework NNR, (c) NNR with framework, (d) residual of NNR with framework. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11a and b show the baseline performance of non-framework
SVR, which is visually better than that of NNR. However, the influence
of noise filtering SVR’s performance is more interesting. Fig. 11c and d

indicate that the noise filtering framework had a significant influence
on SVR’s performance. It yielded almost perfect prediction results with
a distribution pattern that perfectly follows the line of equity. Fig. 11c

Table 11
Effect of noise filtering framework on NNR.

Non-framework Framework

excellent good acceptable spoiled overall excellent good acceptable spoiled overall

RMSE 0.784 1.111 0.373 2.741 2.556 0.652 0.894 0.611 0.476 0.519
R2 0.836 0.762 0.047 0.599 0.771 0.926 0.997 0.971 0.731 0.953
Adjusted R2 0.835 0.759 0.037 0.599 0.771 0.925 0.997 0.971 0.731 0.953
Bf 1.078 1.32 1.047 0.677 0.729 1.201 1.259 1.136 0.982 1.011
Af 1.266 1.328 1.087 1.488 1.458 1.226 1.264 1.139 1.066 1.1
MRPR (%) −10.555 –32.247 −4.94 32.139 25.249 −20.565 −26.041 −13.621 1.572 −1.586
MAPR (%) 22.099 32.247 7.093 32.139 30.574 20.565 26.041 13.621 5.203 7.388

(a) (b) 

(c) (d) 
Fig. 11. Prediction of the number of the microbial population using SVR. Red, green, blue, and black marks indicate ‘excellent’, ‘good’, ‘acceptable’, and ‘spoiled’
beef, respectively. (a) non-framework SVR, (b) residual of non-framework SVR, (c) SVR with framework, (d) residual of SVR with framework. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 12
Effect of noise filtering framework on SVR.

Non-framework Framework

excellent good acceptable spoiled overall excellent good acceptable spoiled overall

RMSE 0.602 0.182 0.092 0.131 0.196 0.302 0.001 0.01 0.005 0.074
R2 0 0.732 0.906 0.971 0.989 0.154 1 0.999 1 0.998
Adjusted R2 −0.007 0.729 0.904 0.971 0.989 0.148 1 0.999 1 0.998
Bf 1.068 1.01 1.005 0.998 1.003 1.018 1 1.001 1 1.001
Af 1.182 1.047 1.021 1.017 1.046 1.083 1 1.002 1.001 1.02
MRPR (%) −8.287 −1.116 −0.481 0.142 −0.446 −2.163 −0.004 −0.07 0.007 −0.127
MAPR (%) 9.571 1.582 1.059 0.413 1.042 2.445 0.013 0.094 0.014 0.163
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indicates a small difference between the actual and the predicted va-
lues; there is only one point that is significantly different, which is in
the ‘excellent’ class. Table 12 shows more details of the performance.
The overall RMSE value is 0.074, which explains the very low error.
Furthermore, R2 and adjusted R2 also performed better. The values for
all classes are high (0.999–1) except for ‘excellent’ with an R2 of only
0.154 of and an adjusted R2 of 0.148. This is because the baseline values
of ‘excellent’ (non-framework SVR) are extremely low (R2= 0 and
adjusted R2= -0.007). However, overall R2 and adjusted R2 still
showed high agreement between the actual and the predicted values
(0.998). Moreover, the overall Bf value is 1.001, which shows very low
bias, with only 0.001 overestimates in the prediction results. In terms of
accuracy, Af≈ 1 implies better accuracy than non-framework. Fig. 11d
shows that the residual is closer to zero compared to Fig. 11b. This can
be explained by the lower MRPR and MAPR values.

Fig. 12 shows the prediction of the number of the microbial popu-
lation using ANFIS with framework and non-framework ANFIS. Fig. 12a
and b show that ANFIS produced unsatisfactory performance when it

had to deal with noisy signals. The majority of the prediction results are
below the actual values, which means that the results were under-
estimated. The advantage of using the noise filtering framework is
shown in Fig. 12c and d. They indicate a significant improvement when
using the noise filtering framework. The plots of prediction of the
number of the microbial population almost precisely follow the line of
equity as well as the low residual. Moreover, Table 13 also shows a very
low RMSE (ca. 0.002), which means small differences between the ac-
tual values and the predicted values from the regression model.
Moreover, the R2 and adjusted R2 values indicate perfect agreement
between the actual and the predicted values (R2=1). The noise fil-
tering also successfully reduced the bias ( =B 1f ). When not using fra-
mework, it yielded an underestimated value ( =B 0.94f ). The value of
Af decreased from 1.117 to 1.001, which means an improvement of
model accuracy. MRPR was −0.015% and MAPR was 0.018%, in-
dicating low residuals generated by the regression model when using
the noise filtering framework.

The above results demonstrate the advantage of using the proposed

Fig. 12. Prediction of the number of the microbial population using ANFIS regression. Red, green, blue, and black marks indicate ‘excellent’, ‘good’, ‘acceptable’, and
‘spoiled’ beef, respectively. (a) non-framework ANFIS regression, (b) residual of non-framework ANFIS regression, (c) ANFIS regression with framework, (d) residual
of ANFIS regression with framework. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 13
Effect of noise filtering framework on ANFIS regression.

Non-framework Framework

excellent good acceptable spoiled overall excellent good acceptable spoiled overall

RMSE 0.032 0.432 0.513 0.818 0.769 0.006 0.003 0.001 0 0.002
R2 0.978 0.678 0.228 0.6 0.886 1 1 1 1 1
Adjusted R2 0.977 0.675 0.219 0.6 0.886 1 1 1 1 1
Bf 1.006 0.886 0.907 0.939 0.94 1.002 1.001 1 1 1
Af 1.011 1.14 1.127 1.119 1.117 1.002 1.001 1 1 1.001
MRPR (%) −0.612 11.238 9.042 5.656 5.66 −0.197 −0.093 0.014 0.001 −0.015
MAPR (%) 0.828 11.238 9.247 5.677 5.773 0.197 0.093 0.02 0.001 0.018
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noise filtering framework in regression tasks. Basically, SVR is more
robust than NNR and ANFIS against noisy signals. In SVR, the soft
margin, which is represented by a slack variable, can give better per-
formance than in NNR and ANFIS. Nevertheless, noise filtering is still
needed in SVR. NNR and ANFIS yield unsatisfactory performance with
noisy signals. This is because they do not have a particular mechanism
to deal with noise. They get a significant improvement when noise
filtering is applied. Finally, according to the experimental results, uti-
lization of the proposed noise filtering framework presents a significant
improvement in regression tasks. This was proved by reduced number
of errors (RMSE), bias (Bf ), residual (MRPR and MAPR) as well as in-
creased accuracy (Af ) and agreement between actual and prediction
results, as shown by better appropriate values (R2 and adjusted R2).

5. Conclusions

The use of analytical instruments is necessary for food safety and in
particular for highly perishable foods such as beef, lamb, pork, fish, etc.
The utilization of an e-nose device for online food quality monitoring is a
prospective concept to monitor shelf-life during meat storage. However,
the presence of noise in the e-nose signal generated by the gas sensors is a
major challenge. In this study, a framework for noise filtering was de-
veloped to deal with e-nose signals in beef quality monitoring that are
contaminated with noise. The effects of the framework have been in-
vestigated for classification of two, three, and four classes of beef grade
based on several well-known machine learning algorithms that have been
used in previous studies on beef quality monitoring. The results showed
that k-NN, SVM, ANN, and ANFIS got significant improvement in multi-
class classification, while the impact on binary classification was not very
distinct. In multiclass classification tasks, the proposed noise filtering
framework could also provide performance improvement on various
parameters of the machine learning algorithms. Meanwhile, the utilization
of the noise filtering framework in QDA caused a singular covariance
matrix problem. The layered models, e.g., ANN and ANFIS produced the
best performance when using the framework, especially in multiclass
classification. Meanwhile, QDA had the worst performance in all cases.

In regression tasks, NNR, SVR, and ANFIS were used to predict the
number of the microbial population in a beef sample. The experimental
results demonstrated that the use of the noise filtering framework can
reduce the number of errors, bias and residual in regression tasks.
Moreover, it can increase the parts of the variance of the actual data that
can be predicted by the regression model, as indicated by the enhance-
ment of R2 and adjusted R2. The prediction accuracy also increased, as
shown by Af ≈ 1. According to the experimental results, SVR and ANFIS
performed better than NNR. Overall, the results show the advantage of
using the proposed noise filtering framework. This is proved by the
performance improvement of the machine learning algorithms that were
used in previous studies. Hence, the proposed noise filtering framework
provides a solution to deal with e-nose signals in beef quality monitoring
that are contaminated with noise caused by uncontrolled ambient con-
ditions. Finally, performing noise filtering on e-nose signal is highly re-
commended, especially for multiclass classification and regression tasks.
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